Nonlocal problems at critical growth in contractible domains

نویسندگان

  • Sunra Mosconi
  • Naoki Shioji
  • Marco Squassina
چکیده

We prove the existence of a positive solution for nonlocal problems involving the fractional Laplacian and a critical growth power nonlinearity when the equation is set in a suitable contractible domain.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonlocal Problems at Nearly Critical Growth

We study the asymptotic behavior of solutions to the nonlocal nonlinear equation (−∆p) u = |u|u in a bounded domain Ω ⊂ R as q approaches the critical Sobolev exponent p∗ = Np/(N − ps). We prove that ground state solutions concentrate at a single point x̄ ∈ Ω and analyze the asymptotic behavior for sequences of solutions at higher energy levels. In the semi-linear case p = 2, we prove that for s...

متن کامل

Global Compactness Results for Nonlocal Problems

We obtain a Struwe type global compactness result for a class of nonlinear nonlocal problems involving the fractional p−Laplacian operator and nonlinearities at critical growth.

متن کامل

Order-type existence theorem for second order nonlocal problems at resonance

‎This paper gives an abstract order-type existence theorem for second order nonlocal boundary value problems at resonance and obtain existence criteria for at least two positive solutions‎, ‎where $f$ is a continuous function‎. ‎Our results generalize or extend related results in the literature and give a positive answer to the question raised in the literature‎. ‎An example is given to illustr...

متن کامل

Boundary Regularity Estimates for Nonlocal Elliptic Equations in C and C Domains

We establish sharp boundary regularity estimates in C and C domains for nonlocal problems of the form Lu = f in Ω, u = 0 in Ω. Here, L is a nonlocal elliptic operator of order 2s, with s ∈ (0, 1). First, in C domains we show that all solutions u are C up to the boundary and that u/d ∈ C(Ω), where d is the distance to ∂Ω. In C domains, solutions are in general not comparable to d, and we prove a...

متن کامل

Classical , Nonlocal , and Fractional Diffusion Equations on Bounded Domains

The purpose of this paper is to compare the solutions of one-dimensional boundary value problems corresponding to classical, fractional and nonlocal diffusion on bounded domains. The latter two diffusions are viable alternatives for anomalous diffusion, when Fick’s first law is an inaccurate model. In the case of nonlocal diffusion, a generalization of Fick’s first law in terms of a nonlocal fl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Asymptotic Analysis

دوره 95  شماره 

صفحات  -

تاریخ انتشار 2015